Heterobifunctional PEG-grafted black phosphorus quantum dots: “Three-in-One” nano-platforms for mitochondria-targeted photothermal cancer therapy

© 2021 Elsevier Ltd. All rights reserved.

Abstract

Black phosphorus (BP) nano-materials, especially BP quantum dots (BPQDs), performs outstanding photothermal antitumor effects, excellent biocompatibility and biodegradability. However, there are several challenges to overcome before offering real benefits, such as poor stability, poor dispersibility as well as difficulty in tailoring other functions. Here, a “three-in-one” mitochondria-targeted BP nano-platform, called as BPQD-PEG-TPP, was designed. In this nano-platform, BPQDs were covalently grafted with a heterobifunctional PEG, in which one end was an aryl diazo group capable of reacting with BPQDs to form a covalent bond and the other end was a mitochondria-targeted triphenylphosphine (TPP) group. In addition to its excellent near-infrared photothermal properties, BPQD-PEG-TPP had much enhanced stability and dispersibility under physiological conditions, efficient mitochondria targeting and promoted ROS production through a photothermal effect. Both in vitro and in vivo experiments demonstrated that BPQD-PEG-TPP performed much superior photothermal cytotoxicity than BPQDs and BPQD-PEG as the mitochondria targeted PTT. Thus this “three-in-one” nanoplatform fabricated through polymer grafting, with excellent stability, dispersibility and negligible side effects, might be a promising strategy for mitochondria-targeted photothermal cancer therapy.

Publication
In Asian Journal of Pharmaceutical Sciences
Ke Cheng
Ke Cheng
PhD

My research interests lie at the surface of chemistry and biology, where I am deeply passionate about applying innovative chemistry to advance fields such as chemoproteomics, drug discovery, nanomedicine, and theranostics. My aim is to provide robust methodologies for mapping biological interactomes, accelerating drug development, and expanding therapeutic opportunities.