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1.Histone and non-histone protein acetyla on sequence data comparison  

There are critical biological differences between histone and non-histone protein acetylation. 
Although these two acetylation processes both occur on lysine residues, it is advisable to study 
them separately due to the different biological functions they affect and varying sequence contexts 
of the proteins.  
Histone acetylation is an essential part of gene regulation.  It involves the covalent addition of 
acetyl groups to the conserved lysine residue of histone N-terminal tails. These reactions are 
typically catalysed by serval types of histone acetyltransferases (HATs). To acetylate lysine 
residues on protein sequences, HATs need to first recognize the features around the target lysine 
residues. Histone acetylating abilities of HATs are categorized based on substrate sequence 
similarities, which are typically high among family members [1]. Some of the major families 
identified include: GCN5, p300, MYST and others. For example, H3K9, refers to the 9th lysine 
residue which is highly conserved on the tail of the histone H3 protein [2], can be recognized and 
acetylated by HATs such as GCN5 and PCAF [3]. 
However, the diversity of non-histone proteins is significantly greater than that of histones. HAT 
families mainly exhibit specificity towards histone proteins, which may lead to issues with 
generalization and limits their ability to recognize all non-histone acetylation sites. For example, 
it is identified that KAT13D (CLOCK), which is not a HAT, can directly acetylates 
argininosuccinate synthase (ASS1) at K165 and K176 residues [4]. 
To visualize the differences between histone acetylation and non-histone acetylation protein 
sequences, we downloaded all acetylated histone sequences from the UniProt database. We then 
extracted sequences adjacent to the acetylation sites based on the 25 amino acid length window 
size and compared them with our positive dataset of non-histone acetylation sequences. We 



analyzed these datasets using three methods: amino acid residue proportion analysis, Two Sample 
Logo analysis, and multiple sequence alignment (MSA) analysis. 
We calculated the occurrence composition for amino acid residues in the histone and non-histone 
protein acetylation sequences (Figure S1A). Also, a Two Sample Logo was utilized to analyze the 
occurrence of amino acids around histone and non-histone protein acetylation sites (Figure S1B). 
From Figure S1A, we can observe that there is notable difference in residue composition between 
histone and non-histone protein acetylation sequences. The histone acetylation sequences contain 
significantly higher amounts of alanine (A), glycine (G), and lysine (K) than those found in non-
histone protein acetylation sequences. Figure S1B further illustrates that the compositional and 
positional information of acetylated histone sequences and acetylated non-histone protein 
sequences have statistically significant differences. We can see that, compared to the non-histone 
side (lower panel), the histone side (upper panel) displays less variety of amino acid residues, 
mainly consisting of alanine (A), glycine (G), and lysine (K). This trend aligns with the results 
shown in Figure S1A. On the non-histone side (lower panel), however, a more diverse array of 
amino acid residues is presented, reflecting the lack of conservation of the non-histone acetylation 
sequences. We also applied multiple sequence alignment (MSA) to analysis the conservation 
features of histone and non-histone protein acetylation sequences using Jalview [5] software. The 
results are showed in the Figure S1C. We can obverse that the overall conservation score of histone 
acetylation sequences (score: 28) is more than 3 times higher than non-histone protein sequences 
(score: 9).  
In summary, the biological functions of histones and non-histone proteins are different, and the 
contexts of the acetylated lysine (K) sites on their sequences are also distinct. Compared to the 
histone acetylation sequences, the amino acid composition near the non-histone proteins 
acetylation sites is more diverse, more irregular, and less conserved, necessitating a classifier with 
enhanced capabilities, particularly in terms of generalization and interpretability. This is why we 
have designed and implemented a classifier specifically tailored to non-histone proteins.  
 

 



 
 
Fig. S1. Comparison of histone and non-histone protein acetylation sequences. (A) The percentage of 20 standard 
amino acid residues in the histone and non-histone protein acetylation sequences. (B) Two Sample Logo (p < 0.05) 
of the compositional bias in the histone and non-histone protein acetylation sequences. (C)  Multiple Sequence 
Alignment (MSA) analysis of histone and non-histone protein acetylation sequences. Conservation is calculated 
according to Livingstone and Barton [6] and reflects the number of physicochemical properties shared by all amino 
acids in a column. Quality score reflects the total likelihood of observing mutations between amino acids aligned at 
the given column, based on the BLOSUM62 [7] substitution matrix.  Consensus annotation row shows the modal 
residue in each column (or + if more than one residue is observed) and the proportion of sequences that contain 
that residue. Occupancy measures the number of sequences aligned at each position.  

 



2. Hyper-parameters of compara ve classifiers for TransPTM 

In our study, we utilized seven distinct classifiers: Random Forest (RF), Support Vector Machine 
(SVM), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and three 
existing acetylation site prediction tools. Each of these models was configured with specific hyper-
parameters as follows: 
Random Forest (RF): We utilized 23 trees with a max_features of 100.  
Support Vector Machine (SVM): The kernel was configured as ‘linear', with C (regularization 
parameter) set to 30 and tol (tolerance for the stopping criterion) set to 0.001. 
Convolutional Neural Network (CNN): The CNN model is composed of two convolutional layers, 
the first containing 32 filters and the second 64 filters, each followed by a ReLU activation function. 
We employed the Adam optimizer with a learning rate of 0.001, and the model underwent training 
for 50 epochs. 
Long Short-Term Memory (LSTM): The LSTM model has 3 layers, each with 128 units. We 
employed the Adam optimizer with a learning rate of 0.001, and the model underwent training for 
50 epochs. 
GPS-PAIL: In the GPS-PAIL 2.0 software, we input our non-histone acetylation independent 
testing set and selected the "ALL" and "High" settings under "HAT(s)" and "Threshold" tabs, 
respectively. This indicates that we apply GPS-PAIL to predict acetylation sites to all the seven 
distinct HATs, while generate predicted scores for lysine residues with a stringent threshold with 
Sp value of 95% [8]. (https://pail.biocuckoo.org/online.php) 
 

 
 
 



MusiteDeep: In the MusiteDeep webserver, we input our non-histone acetylation independent 
testing set and selected the "0.5" and "N6-acetyllysine(K)" settings under "Threshold" bar and 
"PTM types" tab, respectively. (https://www.musite.net/) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Deep-PLA: In the Deep-PLA webserver, we input our non-histone acetylation independent testing 
set and selected the "ALL" and "High" settings under "HAT(s)" and "Threshold" tabs, respectively. 
(http://deeppla.omicsbio.info/webserver.php) 
 

 
 
 

The hyper-parameters for RF and SVM were selected through a combination of randomized search 
and 5-fold cross validation to optimize these parameters, ensuring a balance between model 
complexity and the risk of overfitting. Meanwhile, the hyper-parameters for the CNN and LSTM 
were chosen through manual selection, allowing us to leverage our domain knowledge and 
experience to enhance efficiency and computational resource utilization. Comparison with 
different methods should base on same learning dataset. The results will be unfairness if we use 
different training data. However, we couldn’t access the source codes of other existing tools.  
To evaluate the model, we employed an alternative approach: testing it on the independent set that 
was not included in the training dataset. Our criterion for selecting these hyperparameter 
combinations for each model was to choose the one that achieves the highest AUC. This approach 
aligns with our methodology for training the TransPTM model, where we also prioritized 
maximizing the AUC.  
 
 
 
 
 
 



 

Classifiers Hyper-parameters Run Time (s)

RF 
'max_features': 100 

'n_estimators': 23 
46.51 

SVM 
'c': 30 

'tol': 0.001 
499.86 

CNN 

Activation Function: Relu 

Loss Function: Cross Entropy 

Training Epochs: 50 

Optimizer: Adam 

33.78 

LSTM 

Activation Function: Relu 

Loss Function: Binary Cross Entropy

Training Epochs: 50 

Optimizer: Adam 

25.01 

GPS-PAIL (software) 
‘Threshold’: High 

‘HATs’: ALL 
- 

MusiteDeep (webserver) 
‘Threshold’: 0.5 

‘PTM Types’: N6-acetyllysine(K) 
- 

Deep-PLA (webserver) 
‘Threshold’: High 

‘HATs’: ALL 
- 

ProtT5 (fine-tuned) 

Activation Function: Relu 

Loss Function: Binary Cross Entropy

Training Epochs: 50 

Optimizer: Adam 

336.41 

TransPTM 

Activation Function: Relu 

Loss Function: Binary Cross Entropy

Training Epochs: 100 

Optimizer: Adam 

261.00 

Table. S1. Hyper-parameters of comparative classifiers for TransPTM. Note: -, data not available; run time are 
excluded as evaluations were conducted via software or webservers. 

 
 



 
3. 5-fold cross-valida on on en re dataset 

 
Fig. S2. Performance of TransPTM (ProtT5) on the entire dataset using 5-fold cross-validation. (A) ROC curves, (B) 
Precision-recall curves. 

 
 

 
4. Hyper-parameters selec on for ProtT5 language model 

To optimize hyperparameters, we designed two types of classifiers for the ProtT5 model: CNN 
and MLP. For each classifier, we experimented with three different learning rates: 1e-4, 1e-5, and 
1e-6. In line with the criteria used for other baseline models, which prioritize maximizing AUC, 
the best-performing setup was determined to be the CNN classifier with the learning rate of 1e -5. 
This hyper -parameter combination achieved an accuracy of 0.74, an F1 score of 0.41, an MCC of 
0.31, an AUC of 0.71, and an AUPRC of 0.24. These results have been listed into Table S2. 
 
 
 
 
 
 
 
 
 
 



Classifier Learning rate Accuracy F1 score MCC AUC AUPRC

CNN 
1e-4 0.7473 0.3867 0.2729 0.6769 0.2259 
1e-5 0.7436 0.4118 0.3094 0.7056 0.2440 
1e-6 0.8013 0.2439 0.1300 0.5625 0.1649 

MLP 
1e-4 0.7738 0.3778 0.2612 0.6587 0.2205 
1e-5 0.8132 0.3929 0.2863 0.6563 0.2331 
1e-6 0.8562 0.3938 0.3197 0.6392 0.2497 

Table. S2. Hyper-parameters selection for ProtT5 language model. CNN: activation function: Relu, loss function: 

binary cross entropy, training epochs: 50, optimizer: adam. MLP: activation function: Relu, loss function: binary cross 

entropy, training epochs: 50, optimizer: adam. 
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