Supporting Information

UniPTM: Multiple PTM site prediction on full-length protein sequence

Lingkuan Meng,[†] Jiecong Lin,[‡] Ke Cheng,[¶] Kui Xu,[§] Hongyan Sun,^{*,||} and Ka-Chun Wong^{*,†}

†Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

[‡]Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

¶Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, United States

§School of Life Sciences, Tsinghua University, Beijing 100084, China

||Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong

> E-mail: hongysun@cityu.edu.hk; kc.w@cityu.edu.hk Phone: +852 34429537; +852 34428618

Dataset construction details

Figure S1: Distribution of sequence lengths in raw data.

Figure S2: Data scale comparison in PTMseq pre- and post-CD-HIT deduplication processing.

One-hot											
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC				
Phosphoserine	0.9060 ± 0.0090	0.4659 ± 0.0354	0.4721 ± 0.0399	0.4671 ± 0.0155	0.4168 ± 0.0180	0.8483 ± 0.0057	0.4588 ± 0.0173				
Phosphothreonine	0.9255 ± 0.0032	0.4556 ± 0.0395	0.4509 ± 0.0194	0.4526 ± 0.0260	0.4130 ± 0.0270	0.8531 ± 0.0070	0.4475 ± 0.0410				
Phosphotyrosine	0.8994 ± 0.0297	0.6205 ± 0.1204	0.6090 ± 0.0319	0.6077 ± 0.0501	0.5548 ± 0.0660	0.8766 ± 0.0184	0.6481 ± 0.0720				
Acetyllysine	0.9209 ± 0.0221	0.5766 ± 0.1414	0.4442 ± 0.0752	0.5001 ± 0.1021	0.4634 ± 0.1161	0.8197 ± 0.0368	0.5203 ± 0.1203				
Succinyllysine	0.8238 ± 0.0358	0.3636 ± 0.1209	0.3228 ± 0.1290	0.3188 ± 0.0671	0.2348 ± 0.0783	0.7370 ± 0.0477	0.3438 ± 0.0378				
Methylarginine	0.9235 ± 0.0148	0.3805 ± 0.0645	0.5027 ± 0.1203	0.4224 ± 0.0435	0.3932 ± 0.0409	0.8897 ± 0.0131	0.3573 ± 0.0742				
Methyllysine	0.9477 ± 0.0127	0.6448 ± 0.2528	0.4288 ± 0.0748	0.5035 ± 0.1193	0.4945 ± 0.1405	0.8354 ± 0.0726	0.5108 ± 0.1801				
Trimethyllysine	0.9547 ± 0.0193	0.6657 ± 0.3799	0.4495 ± 0.3246	0.5236 ± 0.3366	0.5257 ± 0.3310	0.8041 ± 0.1611	0.5677 ± 0.3061				
Dimethyllysine	0.9462 ± 0.0199	0.7372 ± 0.0549	0.5923 ± 0.1405	0.6474 ± 0.0956	0.6281 ± 0.0867	0.8672 ± 0.0605	0.6901 ± 0.0805				
ProtBert											
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC				
Phosphoserine	0.9342 ± 0.0076	0.6403 ± 0.0576	0.5890 ± 0.0570	0.6095 ± 0.0165	0.5768 ± 0.0168	0.8957 ± 0.0074	0.6426 ± 0.0183				
Phosphothreonine	0.9301 ± 0.0161	0.5146 ± 0.1115	0.6017 ± 0.0530	0.5446 ± 0.0475	0.5152 ± 0.0459	0.8868 ± 0.0036	0.5679 ± 0.0376				
Phosphotyrosine	0.9290 ± 0.0121	0.7183 ± 0.0475	0.7098 ± 0.0426	0.7137 ± 0.0418	0.6734 ± 0.0476	0.9227 ± 0.0122	0.7521 ± 0.0423				
Acetyllysine	0.9356 ± 0.0090	0.6487 ± 0.0871	0.5813 ± 0.0351	0.6124 ± 0.0582	0.5789 ± 0.0641	0.8626 ± 0.0156	0.6267 ± 0.0552				
Succinyllysine	0.9071 ± 0.0322	0.7171 ± 0.0993	0.5316 ± 0.0835	0.6084 ± 0.0802	0.5664 ± 0.0989	0.8547 ± 0.0437	0.6585 ± 0.0695				
Methylarginine	0.9464 ± 0.0111	0.5359 ± 0.0732	0.5739 ± 0.0628	0.5484 ± 0.0295	0.5236 ± 0.0254	0.9235 ± 0.0086	0.4879 ± 0.0836				
Methyllysine	0.9651 ± 0.0055	0.8228 ± 0.1419	0.5312 ± 0.1091	0.6418 ± 0.1093	0.6430 ± 0.1121	0.8812 ± 0.0628	0.6177 ± 0.1522				
Trimethyllysine	0.9676 ± 0.0116	0.9031 ± 0.1216	0.6428 ± 0.1530	0.7360 ± 0.1115	0.7389 ± 0.0976	0.9021 ± 0.0585	0.7331 ± 0.1551				
Dimethyllysine	0.9634 ± 0.0219	0.8984 ± 0.1334	0.6910 ± 0.0958	0.7744 ± 0.0840	0.7661 ± 0.0933	0.9282 ± 0.0297	0.8070 ± 0.0614				
						Conti	nued on next page				

Table S1: Results of 5-fold CV on entire data set before splitting	Ta	ble S1	1: R	esults	of	5-fold	CV	on	entire	data	set	before	splitting	
--	----	--------	------	--------	----	--------	---------------	----	--------	------	----------------------	--------	-----------	--

ProtT5												
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC					
Phosphoserine	0.9354 ± 0.0022	0.6367 ± 0.0296	0.6080 ± 0.0291	0.6212 ± 0.0146	0.5866 ± 0.0153	0.9032 ± 0.0059	0.6490 ± 0.0185					
Phosphothreonine	0.9322 ± 0.0106	0.5121 ± 0.0945	0.5738 ± 0.0229	0.5383 ± 0.0542	0.5046 ± 0.0588	0.8888 ± 0.0100	0.5358 ± 0.0612					
Phosphotyrosine	0.9206 ± 0.0111	0.6606 ± 0.0530	0.7513 ± 0.0269	0.7022 ± 0.0360	0.6590 ± 0.0391	0.9180 ± 0.0117	0.7522 ± 0.0366					
Acetyllysine	0.9387 ± 0.0058	0.6738 ± 0.0481	0.5871 ± 0.0538	0.6256 ± 0.0370	0.5951 ± 0.0365	0.8816 ± 0.0183	0.6392 ± 0.0490					
Succinyllysine	0.8971 ± 0.0243	0.6435 ± 0.0467	0.5358 ± 0.0886	0.5812 ± 0.0606	0.5284 ± 0.0691	0.8589 ± 0.0356	0.6363 ± 0.0484					
Methylarginine	0.9440 ± 0.0126	0.5138 ± 0.0531	0.5793 ± 0.0784	0.5399 ± 0.0384	0.5139 ± 0.0363	0.9308 ± 0.0061	0.5135 ± 0.0613					
Methyllysine	0.9646 ± 0.0060	0.7843 ± 0.1290	0.5544 ± 0.1264	0.6465 ± 0.1188	0.6407 ± 0.1207	0.8850 ± 0.0599	0.6272 ± 0.1686					
Trimethyllysine	0.9705 ± 0.0139	0.9091 ± 0.1107	0.6759 ± 0.1696	0.7623 ± 0.1230	0.7632 ± 0.1143	0.9039 ± 0.0719	0.7491 ± 0.1515					
Dimethyllysine	0.9611 ± 0.0239	0.8458 ± 0.0887	0.7008 ± 0.1276	0.7613 ± 0.0946	0.7472 ± 0.1019	0.9082 ± 0.0356	0.7853 ± 0.0821					
	ESM-2											
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC					
Phosphoserine	0.9372 ± 0.0031	0.6513 ± 0.0301	0.6046 ± 0.0248	0.6265 ± 0.0170	0.5931 ± 0.0183	0.9019 ± 0.0061	0.6634 ± 0.0203					
Phosphothreonine	0.9264 ± 0.0070	0.4727 ± 0.0174	0.6338 ± 0.0279	0.5411 ± 0.0127	0.5086 ± 0.0155	0.8944 ± 0.0101	0.5592 ± 0.0191					
Phosphotyrosine	0.9321 ± 0.0062	0.7287 ± 0.0524	0.7249 ± 0.0396	0.7258 ± 0.0352	0.6877 ± 0.0376	0.9229 ± 0.0160	0.7694 ± 0.0457					
Acetyllysine	0.9400 ± 0.0054	0.6814 ± 0.0308	0.5837 ± 0.0703	0.6277 ± 0.0532	0.5980 ± 0.0519	0.8709 ± 0.0200	0.6295 ± 0.0628					
Succinyllysine	0.9087 ± 0.0223	0.7087 ± 0.0484	0.5567 ± 0.0942	0.6188 ± 0.0635	0.5766 ± 0.0665	0.8783 ± 0.0327	0.6764 ± 0.0499					
Methylarginine	0.9417 ± 0.0145	0.5156 ± 0.1095	0.5824 ± 0.1109	0.5310 ± 0.0297	0.5107 ± 0.0267	0.9239 ± 0.0059	0.4831 ± 0.0686					
Methyllysine	0.9639 ± 0.0099	0.7696 ± 0.1810	0.5577 ± 0.1305	0.6443 ± 0.1435	0.6362 ± 0.1510	0.8769 ± 0.0660	0.6186 ± 0.1817					
Trimethyllysine	0.9670 ± 0.0118	0.8711 ± 0.1143	0.6619 ± 0.1645	0.7360 ± 0.1129	0.7348 ± 0.0982	0.9073 ± 0.0715	0.7437 ± 0.1358					
Dimethyllysine	0.9606 ± 0.0246	0.8793 ± 0.1351	0.6862 ± 0.1296	0.7611 ± 0.0970	0.7521 ± 0.1056	0.9015 ± 0.0715	0.7781 ± 0.0882					

Table S1 – Continued from previous page

Transformer model and multi-head attention

In this research, we apply the encoder component of the transformer model as the foundation for the UniPTM framework. Transformers are a category of deep learning models that have made significant advancements in natural language processing (NLP)^{1,2} and have recently been utilized to model protein sequences.³ The encoder component learns the latent representation of the input sequence through the self-attention mechanism. The self-attention mechanism has been used in conjunction with sequential models, such as recurrent neural networks (RNN)⁴ and LSTM,⁵ to address declines in model performance when processing long sequences. The transformer model discards the recurrent architecture found in earlier sequential models and depends entirely on the self-attention mechanism to learn input sequence's representations. The benefits of this model architecture are various. Self-attention reduces the computational complexity per layer, allowing for faster training as the model relies solely on self-attention, which primarily involves matrix multiplications. Additionally, the self-attention mechanism effectively facilitates learning long-range dependencies within the input sequence.

The weights used for linearly projecting the entire input sequence are represented by the matrices W_q , W_k , and W_v . In this research, we applied the scaled dot-product attention:

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$
 (1)

Multi-head attention involves using several linear projection matrices simultaneously to compute attention. In multi-head attention, the matrices W_q , W_k , and W_v are initialized differently for each head, allowing the model to capture various representations of the input sequence from different subspaces. If we assume that there are h attention heads, the multihead attention can be computed using the following formula:

$$Multi-Head(Q, K, V) = Concat(head_1, head_2, \dots, head_h)W^O$$
(2)

where each $head_i$ is computed as:

$$head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$$
(3)

Here, W_i^Q , W_i^K , and W_i^V are the parameter matrices for the *i*-th head; and W^O is the output projection matrix that combines the outputs of all heads. In this study, $d_{\text{emb}} = 256$ and the number of head h = 8. The dimension of the W_i^Q , W_i^K , and W_v^i linear projection matrices is $W_i^Q \in \mathbb{R}^{d_{emb} \times d_k}$, $W_i^Q \in \mathbb{R}^{d_{emb} \times d_k}$, and $W_i^V \in \mathbb{R}^{d_{emb} \times d_k}$, where $d_{\text{emb}} = 256$ and $d_v = d_k = d_{emb}/h = 32$. Moreover, $W^O \in \mathbb{R}^{d_{emb} \times d_{emb}}$.

Training details

In this section, we provide detailed descriptions of the hyperparameters (Table S1) used for training the UniPTM model, along with the equations (C.4-C.8) for the five evaluation criteria.

Table S2: Hyperparameters for the UniPTM model training

Batch Size	lr	Optimizer	Epochs	Emb size	$\mathrm{Train}/\mathrm{Val}$	Weight Decay	dropout rate	pos_weight
32	5e-5	Adam	200	1024/1280	0.9/0.1	1e-5	0.5	3

Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$
 (4)

$$Precision = \frac{TP}{TP + FP}$$
(5)

$$\text{Recall} = \frac{TP}{TP + FN} \tag{6}$$

F1 score
$$= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$
 (7)

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
(8)

Model evaluation results

One-hot											
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC				
Phosphoserine	0.9076 ± 0.0081	0.4712 ± 0.0396	0.4168 ± 0.0233	0.4419 ± 0.0279	0.3928 ± 0.0328	0.8367 ± 0.0078	0.4367 ± 0.0353				
Phosphothreonine	0.9176 ± 0.0123	0.3953 ± 0.0686	0.3889 ± 0.0583	0.3916 ± 0.0618	0.3477 ± 0.0675	0.8298 ± 0.0172	0.3751 ± 0.0764				
Phosphotyrosine	0.8838 ± 0.0190	0.5341 ± 0.0744	0.5735 ± 0.0521	0.5513 ± 0.0536	0.4863 ± 0.0629	0.8482 ± 0.0200	0.5749 ± 0.0695				
Acetyllysine	0.9039 ± 0.0103	0.4367 ± 0.0488	0.3863 ± 0.0581	0.4085 ± 0.0470	0.3581 ± 0.0521	0.7912 ± 0.0229	0.4088 ± 0.0601				
Succinyllysine	0.8431 ± 0.0381	0.1963 ± 0.1795	0.1789 ± 0.1755	0.1846 ± 0.1735	0.1271 ± 0.1182	0.6601 ± 0.0838	0.2644 ± 0.0711				
Methylarginine	0.9276 ± 0.0167	0.3918 ± 0.0750	0.4383 ± 0.0653	0.4074 ± 0.0467	0.3736 ± 0.0472	0.8702 ± 0.0200	0.3519 ± 0.0909				
Methyllysine	0.9443 ± 0.0161	0.5517 ± 0.3704	0.3241 ± 0.1880	0.4007 ± 0.2431	0.3982 ± 0.2509	0.8119 ± 0.0529	0.4908 ± 0.1251				
Trimethyllysine	0.9516 ± 0.0236	0.6795 ± 0.3815	0.4260 ± 0.2419	0.5219 ± 0.2926	0.5214 ± 0.2921	0.8309 ± 0.1145	0.6348 ± 0.1680				
Dimethyllysine	0.9348 ± 0.0254	0.7324 ± 0.4237	0.2807 ± 0.2282	0.3776 ± 0.2714	0.4154 ± 0.2614	0.7980 ± 0.1060	0.5633 ± 0.1335				
ProtBert											
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC				
Phosphoserine	0.9331 ± 0.0039	0.6416 ± 0.0306	0.5420 ± 0.0262	0.5867 ± 0.0090	0.5534 ± 0.0100	0.8837 ± 0.0043	0.6126 ± 0.0141				
Phosphothreonine	0.9331 ± 0.0069	0.5088 ± 0.0471	0.5132 ± 0.0426	0.5101 ± 0.0370	0.4747 ± 0.0402	0.8744 ± 0.0045	0.5048 ± 0.0494				
Phosphotyrosine	0.9108 ± 0.0052	0.6250 ± 0.0436	0.6994 ± 0.0219	0.6595 ± 0.0292	0.6101 ± 0.0307	0.9097 ± 0.0160	0.7076 ± 0.0286				
Acetyllysine	0.9278 ± 0.0081	0.5985 ± 0.0547	0.5059 ± 0.0605	0.5461 ± 0.0472	0.5108 ± 0.0493	0.8348 ± 0.0234	0.5595 ± 0.0491				
Succinyllysine	0.8961 ± 0.0286	0.7613 ± 0.1427	0.3465 ± 0.1177	0.4609 ± 0.1217	0.4582 ± 0.0978	0.8154 ± 0.0371	0.5647 ± 0.0645				
Methylarginine	0.9456 ± 0.0125	0.5239 ± 0.0623	0.4813 ± 0.1122	0.4969 ± 0.0784	0.4714 ± 0.0788	0.9028 ± 0.0235	0.4331 ± 0.0941				
Methyllysine	0.9575 ± 0.0108	0.7642 ± 0.1417	0.4957 ± 0.0836	0.6006 ± 0.1020	0.5948 ± 0.1116	0.8683 ± 0.0507	0.5923 ± 0.1395				
Trimethyllysine	$0.9\overline{678} \pm 0.0163$	0.8800 ± 0.1460	0.6613 ± 0.1582	0.7443 ± 0.1138	0.7418 ± 0.1182	0.8865 ± 0.0725	0.7551 ± 0.1448				
Dimethyllysine	0.9553 ± 0.0200	0.8556 ± 0.1089	0.6013 ± 0.1882	0.6819 ± 0.1241	0.6831 ± 0.0954	0.8566 ± 0.0927	0.7122 ± 0.1416				
						Conti	nued on next page				

Table S3:	Results	of 5-fold	CV	on	training	data.

$\operatorname{ProtT5}$													
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC						
Phosphoserine	0.9329 ± 0.0063	0.6403 ± 0.0577	0.5619 ± 0.0491	0.5948 ± 0.0035	0.5621 ± 0.0068	0.8923 ± 0.0043	0.6231 ± 0.0068						
Phosphothreonine	0.9327 ± 0.0101	0.5118 ± 0.0756	0.5944 ± 0.0306	0.5466 ± 0.0383	0.5143 ± 0.0406	0.8893 ± 0.0033	0.5489 ± 0.0487						
Phosphotyrosine	0.9127 ± 0.0078	0.6298 ± 0.0318	0.7089 ± 0.0584	0.6665 ± 0.0401	0.6182 ± 0.0444	0.9073 ± 0.0127	0.7001 ± 0.0479						
Acetyllysine	0.9210 ± 0.0045	0.5476 ± 0.0451	0.5247 ± 0.0546	0.5325 ± 0.0211	0.4917 ± 0.0202	0.8483 ± 0.0188	0.5364 ± 0.0318						
Succinyllysine	0.8838 ± 0.0265	0.6379 ± 0.1527	0.4082 ± 0.1498	0.4674 ± 0.1127	0.4335 ± 0.0704	0.8218 ± 0.0415	0.5560 ± 0.0692						
Methylarginine	0.9483 ± 0.0084	0.5475 ± 0.0666	0.4581 ± 0.0781	0.4976 ± 0.0712	0.4734 ± 0.0724	0.9109 ± 0.0275	0.4877 ± 0.0895						
Methyllysine	0.9559 ± 0.0097	0.7644 ± 0.1451	0.4689 ± 0.0647	0.5791 ± 0.0844	0.5768 ± 0.0957	0.8551 ± 0.0446	0.5865 ± 0.1310						
Trimethyllysine	0.9676 ± 0.0139	0.8942 ± 0.0769	0.6381 ± 0.1504	0.7341 ± 0.0915	0.7349 ± 0.0847	0.8994 ± 0.0791	0.7504 ± 0.1378						
Dimethyllysine	0.9418 ± 0.0232	0.8548 ± 0.1068	0.4266 ± 0.2142	0.5293 ± 0.1838	0.5551 ± 0.1295	0.8327 ± 0.1040	0.6357 ± 0.1412						
	ESM-2												
PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC						
Phosphoserine	0.9338 ± 0.0055	0.6472 ± 0.0578	0.5597 ± 0.0486	0.5968 ± 0.0109	0.5647 ± 0.0117	0.8894 ± 0.0050	0.6291 ± 0.0094						
Phosphothreonine	0.9310 ± 0.0090	0.4981 ± 0.0524	0.5884 ± 0.0360	0.5375 ± 0.0293	0.5038 ± 0.0320	0.8846 ± 0.0060	0.5373 ± 0.0419						
Phosphotyrosine	0.9198 ± 0.0074	0.6736 ± 0.0436	0.6943 ± 0.0615	0.6812 ± 0.0209	0.6372 ± 0.0225	0.9150 ± 0.0181	0.7340 ± 0.0367						
Acetyllysine	0.9320 ± 0.0070	0.6452 ± 0.0248	0.4793 ± 0.0711	0.5467 ± 0.0426	0.5193 ± 0.0356	0.8491 ± 0.0184	0.5580 ± 0.0365						
Succinyllysine	0.8989 ± 0.0264	0.6973 ± 0.1027	0.4304 ± 0.0749	0.5289 ± 0.0688	0.4950 ± 0.0803	0.8449 ± 0.0323	0.5950 ± 0.0755						
Methylarginine	0.9459 ± 0.0074	0.5199 ± 0.0640	0.5089 ± 0.0929	0.5110 ± 0.0664	0.4844 ± 0.0683	0.9016 ± 0.0286	0.4566 ± 0.1121						
Methyllysine	0.9578 ± 0.0091	0.7661 ± 0.1249	0.4991 ± 0.0733	0.6035 ± 0.0880	0.5976 ± 0.0961	0.8521 ± 0.0572	0.5776 ± 0.1582						
Trimethyllysine	0.9687 ± 0.0174	0.9206 ± 0.0865	0.6571 ± 0.1528	0.7535 ± 0.0733	0.7565 ± 0.0689	0.8999 ± 0.0724	0.7600 ± 0.1390						
Dimethyllysine	0.9536 ± 0.0176	0.8350 ± 0.1073	0.5936 ± 0.1680	0.6745 ± 0.0974	0.6724 ± 0.0816	0.8468 ± 0.0814	0.6701 ± 0.1064						

Table S3 – Continued from previous page

PTM type	Accuracy	Precision	Recall	F1	MCC	AUROC	AUPRC
Phosphoserine	0.9389 ± 0.0015	0.6691 ± 0.0157	0.5910 ± 0.0197	0.6275 ± 0.0141	0.5958 ± 0.0143	0.9028 ± 0.0062	0.6592 ± 0.0176
MusiteDeep (S,T)	0.7528	0.2272	0.7915	0.3531	0.3305	0.8399	0.4278
Phosphothreonine	0.9385 ± 0.0048	0.5522 ± 0.0536	0.5827 ± 0.0461	0.5640 ± 0.0240	0.5330 ± 0.0234	0.8908 ± 0.0044	0.5736 ± 0.0310
MusiteDeep (S,T)	0.8901	0.3394	0.5884	0.4305	0.3919	0.8594	0.4378
Phosphotyrosine	0.9299 ± 0.0097	0.7127 ± 0.0596	0.7361 ± 0.0369	0.7230 ± 0.0383	0.6838 ± 0.0418	0.9241 ± 0.0178	0.7712 ± 0.0397
MusiteDeep (Y)	0.7843	0.3591	0.8772	0.5096	0.4668	0.9030	0.6487
Acetyllysine	0.9358 ± 0.0109	0.6500 ± 0.1010	0.5902 ± 0.0402	0.6170 ± 0.0658	0.5839 ± 0.0726	0.8739 ± 0.0194	0.6216 ± 0.0720
DeepAcet	0.5040	0.1081	0.7111	0.1877	0.1074	0.6249	0.1214
Succinyllysine	0.9019 ± 0.0242	0.6774 ± 0.0590	0.5328 ± 0.1071	0.5902 ± 0.0719	0.5447 ± 0.0756	0.8651 ± 0.0274	0.6395 ± 0.0541
LMSuccSite	0.4365	0.1854	0.8918	0.3070	0.1880	0.7102	0.2700
Methylarginine	0.9336 ± 0.0196	0.4645 ± 0.0880	0.6083 ± 0.1307	0.5111 ± 0.0250	0.4909 ± 0.0213	0.9261 ± 0.0116	0.4929 ± 0.0540
DeepRMethylSite	0.9191	0.2917	0.5283	0.3758	0.3534	0.9015	0.3108
Methyllysine	0.9603 ± 0.0117	0.7326 ± 0.2043	0.5467 ± 0.1134	0.6217 ± 0.1409	0.6108 ± 0.1514	0.8811 ± 0.0579	0.6290 ± 0.1491
DeepKme	0.6030	0.1380	0.7910	0.2160	0.2240	0.8100	0.2310
Trimethyllysine	0.9681 ± 0.0096	0.8771 ± 0.0931	0.6729 ± 0.1321	0.7501 ± 0.0758	0.7468 ± 0.0657	0.9072 ± 0.0699	0.7516 ± 0.1394
Dimethyllysine	0.9586 ± 0.0247	0.8465 ± 0.1223	0.6896 ± 0.1144	0.7518 ± 0.0842	0.7387 ± 0.0941	0.9091 ± 0.0428	0.7721 ± 0.0761

Table S4: Performance comparison of state-of-the-art models and UniPTM on independent testing set.

UniPTM mechanism visualization

Figure S3: Visualization of abstract features extracted by UniPTM and original site features by pre-trained ESM-2 model (Part I: phosphoserine, phosphothreosine, and phosphotyrosine). Colored dots represent positive site samples, which are the PTM residues in full-length protein sequences, and gray dots represent negative site samples, which are non-PTM residues.

Figure S4: Visualization of abstract features extracted by UniPTM and original site features by pre-trained ESM-2 model (Part II: acetyllysine, succinyllysine, and methylarginine). Colored dots represent positive site samples, which are the PTM residues in full-length protein sequences, and gray dots represent negative site samples, which are non-PTM residues.

Figure S5: Visualization of abstract features extracted by UniPTM and original site features by pre-trained ESM-2 model (Part III: methyllysine, trimethyllysine, and dimethyllysine). Colored dots represent positive site samples, which are the PTM residues in full-length protein sequences, and gray dots represent negative site samples, which are non-PTM residues.

References

- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I. Attention is all you need. *Advances in neural information processing systems* 2017, 30.
- (2) Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; others Language models are few-shot learners. *Advances in neural information processing systems* **2020**, *33*, 1877–1901.
- (3) Chowdhury, R.; Bouatta, N.; Biswas, S.; Floristean, C.; Kharkar, A.; Roy, K.; Rochereau, C.; Ahdritz, G.; Zhang, J.; Church, G. M.; others Single-sequence protein structure prediction using a language model and deep learning. *Nature Biotechnology* 2022, 40, 1617–1623.
- (4) Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 2014,
- (5) Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735–1780.