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Post-translational modifications (PTMs) are closely linked to numerous diseases, playing a significant role
in regulating protein structures, activities, and functions. Therefore, the identification of PTMs is crucial
for understanding the mechanisms of cell biology and diseases therapy. Compared to traditional machine
learning methods, the deep learning approaches for PTM prediction provide accurate and rapid screening,
guiding the downstream wet experiments to leverage the screened information for focused studies. In
this paper, we reviewed the recent works in deep learning to identify phosphorylation, acetylation, ubiq-
uitination, and other PTM types. In addition, we summarized PTM databases and discussed future direc-
tions with critical insights.
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1. Introduction

Post-translational modifications (PTMs) generally refer to the
addition of functional groups (e.g., phosphates, acetates, small pro-
teins, lipids, carbohydrates, etc.) to amino acids during translation
[1]. After PTM, amino acids’ chemical properties or structures will
be changed, leading to functional changes. To date, over 600 differ-
ent types of PTMs have been discovered in different proteins [2,3].
It is known that phosphorylation, acetylation, and ubiquitination
are the extensively studied PTMs, as quantified with the dbPTM
[4] database. PTMs are critical in maintaining protein structures
[5], functions [6], metabolic regulation [7], cellular signaling [8],
and proteomic diversity [9], whereby our understanding of PTMs
are essential to downstream consequences such as diseases. For
example, S-nitrosylation is a promising therapeutic target for can-
cers and neurodegenerative diseases [10-12]; methyl glutamine is
associated with the host defence mechanism against microorgan-
isms [13,14]. Different experimental techniques have been devel-
oped to reveal the mechanisms underlying PTMs, including
chromatin immunoprecipitation (ChIP) [15], western blotting
(WB) [16], mass spectrometry (MS) [17,18], and isotope labeling
[19]. In the recent decade, MS-based proteomic techniques [20]
play a major role in PTM identification, which yield solid data with
actual evidence [21]. In addition, computational methods can also
explore and predict new modification sites by building a model
from those data. In the last few years, machine learning has grown
to be a cost-effective and labor-efficient method for the prediction
of various PTM sites [22-28]. Specifically, deep learning is an
advanced machine learning method that is capable of automati-
cally exploring PTM patterns and capturing high-level abstraction
(Fig. 1 [29]). Therefore, it is an appropriate solution to improve
the efficiency of PTM sites’ prediction with growing interest in
recent years (Fig. 2). A lot of published works focused on adopting
deep learning to predict PTM sites for phosphorylation [30], acety-
lation [31], ubiquitination [32], and many other types of modifica-
tions [33,34]. One of the most famous tools is MusiteDeep [30],
developed by Wang and Zeng, which leveraged convolutional neu-
ral network (CNN) and 2D attention mechanism for phosphoryla-
tion sites prediction. DeepPhos [35], which is created by Luo
et al., is an efficient phosphorylation sites predictor to identify
not only general but also kinase-specific sites. Moreover, Wu
et al. [36] and Fu et al. [37] developed deep learning-based meth-
ods to predict acetylation and putative ubiquitination sites with
promising results.

In this mini-review, we summarized and discussed the most
recent (2020–2022) progress made in the prediction of PTMs using
deep learning-based methods with a particular emphasis on pro-
tein phosphorylation, acetylation, and ubiquitination sites. More-
over, we presented frequently used databases for deep learning-
based PTM prediction, along with future directions in the compu-
tational identification of PTMs.
2. PTM databases

Available PTM datasets can mainly be retrieved from two
sources: databases with various types of data and scientific litera-
ture data. The obtained data can be used to train a model for PTM
prediction. Table 1 summarizes the leading databases with differ-
ent data types based on recent literature [38-43].
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2.1. UniProt

UniProt [38] is one of the most comprehensive databases with
PTM annotations; it contains annotations for a wide variety of
PTMs. UniProt data is of high quality and was recognized as an
ELIXIR Core Data Resource in 2017 [44]. The database received
the CoreTrustSeal certification in 2020. It has four components cus-
tomized for different uses: UniParc, UniProtKB, UniRef, and
UniMES. Notably, the UniProtKB database has become the gateway
to protein functional information. Over the last two years, Uni-
ProtKB’s sequences have grown to about 190 million [45], despite
efforts in sequence redundancy removal at the proteome level.
According to the survey, we found that most of the literature col-
lect datasets from UniProtKB as their benchmark datasets. The lat-
est version of the UniProt database can be accessed by visiting
https://www.uniprot.org/.

2.2. PLMD

There are 20 types of protein lysine modifications across 176
species in PLMD [43]. The PLMD database was constructed from
the CPLA and CPLM databases with manual curations. It contains
284,780 protein lysine modification sites in 53,501 proteins,
including 111,253 acetylation sites and 121,742 ubiquitination
sites. To the best of our knowledge, it is the largest available data-
base of protein acetylation, along with the largest database of pro-
tein ubiquitination sites, which has never been reported in any
other ubiquitination sites prediction research. There is a free and
open-source version of PLMD 3.0 at https://plmd.biocuckoo.org,
which is implemented in PHP and MySQL.

2.3. PhosphoSitePlus

PhosphoSitePlus (PSP) [40] offers comprehensive data informa-
tion for studying PTMs, such as phosphorylation, SUMOylation,
ubiquitination, and others. Manually collected and organized data
are curated to constitute this database, which primarily contains
human and mouse protein data. At the time of writing, it has har-
bored 598,976 nonredundant modified sites, including 294,425
phosphorylation sites. The PSP database is versatile, offering a vari-
ety of information about the modification sites. PSP is a free data-
base that can be accessed through https://www.phosphosite.org.
3. Phosphorylation site prediction

Phosphorylation is one the most frequently investigated PTM,
referring to the transfer of phosphate groups (PO4) from adenosine
triphosphate (ATP) sites to amino acid chains via the catalysis of
various kinases [46]. Typically, phosphorylation of proteins occurs
at serine (S), threonine (T), or tyrosine (Y) [47]. Approximately
13,000 human proteins can be phosphorylated, and 230,000 phos-
phorylation sites in human proteome were reported [48]. In the
past decades, phosphorylation studies have gained widespread
popularity due to their significance in characterizing signaling
pathways [49,50] and cellular processes, such as cell growth [51],
cell division [52], and apoptosis [53]. With the development of
high-throughput MS-based technology, a single proteomic experi-
ment can detect large-scale phosphorylation. Therefore, various
databases have been built to collect annotated phosphorylation
sites [38-40]. The application of these databases in recent years
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Fig. 1. Overview of deep learning approaches for PTM prediction. [29].
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has been enabled through the extensive development of computa-
tional methods for phosphorylation sites identification [22,54-58].
In machine learning, we can formulate the phosphorylation site
prediction problem as two classification tasks. The first task is
the general site prediction, which aims to determine whether a
given site can be modified. The second task is the kinase-specific
prediction, which determines whether a site can be modified by
a particular kinase [29]. In particular, the recent development of
3524
deep learning could speed up the progress of phosphorylation site
prediction. A well-known deep learning-based predictor, Musite-
Deep [30], incorporates one-hot encoding and CNN with attention
layers and performs better than previous feature-based models.
Another phosphorylation site prediction method, DeepPhos [35],
exploits densely connected convolutional neural network (DC-
CNN) blocks for predictions. The results of DeepPhos outperform
MusiteDeep in not only general sites but also kinase-specific sites



Fig. 2. The statistics of published literature on machine/deep learning-based PTM prediction. (a) Number of articles published in different peer-reviewed journals. Note that
the year 2022 only includes publications up to January 2022. Abbreviations: DL = deep learning, ML = machine learning, PTM = post-translational modification. (b) Word cloud
based on the collective concordance ranking with the size of terms proportional to their frequency in the above articles.

Table 1
Summary of PTM databases harbored.

Database Development
Year

Number of PTM Sites Deposited Database Link Annotation Reference

UniProt 2005 Varies according to the keyword
search

https://www.uniprot.org Multiple-type PTM sites for multi-species [38]

PLMD 2017 284,780 https://plmd.biocuckoo.org/ Protein lysine modification sites for multi-
species

[43]

PhosphoSitePlus 2012 598,976 https://www.phosphosite.org/ Multiple-type PTM sites for multi-species [40]
Phospho.ELM 2010 42,914 https://phospho.elm.eu.org/ Phosphorylation sites for Eukaryotic [39]
mUbiSida 2014 110,976 https://reprod.njmu.edu.cn/

mUbiSiDa
Uniquitination sites mainly for Human and
Mouse

[41]

DEPOD 2015 1,215 https://www.depod.org Dephosphorylation interactions [42]
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predictions. Recently, a single unified multi-label classification
model, EMBER [58], was released. Unlike the previous deep learn-
ing methods, MusiteDeep and DeepPhos, which perform single-
label classification, EMBER was designed to predict phosphoryla-
3525
tion events for multiple kinases. In this tool, the input sequence
is fifteen amino acids in length, of which the eighth site is to be
predicted. The sequence is encoded using both one-hot encoding
and embedding generated from a siamese neural network. After
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encoding, both sequences are fed into their corresponding identical
CNNs. In the top layer, the two feature vectors are concatenated,
followed by fully connected layers. Finally, the output is a vector
of length eight, where each value represents the probability that
a family of kinases will phosphorylate an input site. In addition,
different tools are also proposed to predict protein-specific phos-
phorylation sites. In 2020, Chen et al. developed PROSPECT [56]
which is a method for phosphorylation site prediction occur on his-
tidine using deep learning. Three specific classifiers are set up in
PROSPECT for histidine phosphorylation site prediction based on
one-of-K, EGAAC, and CKSAAGP encodings [35,59]. The classifier
for one-of-K encoding is built with a multi-layer attention-based
CNN; and the classifier for EGAAC encoding employs a multi-
layer CNN. In the case of CKSAAGP encoding, the random forest
(RF) algorithm is used to train the classifier. After that, an online
web server of PROSPECT is developed. In the same year, Wang
et al. also presented a web server named MusiteDeep based on
their deep-learning models implemented in 2017. The server is
capable of providing real-time prediction and batch submission
for large-scale protein sequences, as listed in Table 4. Conclusively,
we compare the performance of recent deep learning-based phos-
phorylation predictors in Table 2.
4. Acetylation site prediction

Acetylation is a very common PTM that describes the modifica-
tion of the acetyl group to amino acid residues. About 63% of mito-
chondrial proteins can be acetylated at their lysine residues [65].
During the protein acetylation process, the positive charge in
lysine residues is neutralized, leading to the regulation of cell lifes-
pan [66], DNA binding [67], the interactions between proteins [68],
and the interactions between proteins and membranes [69]. In
contrast, dysregulation of lysine acetylation is associated with sev-
eral diseases, including cancers [70], cardiovascular diseases [71],
Parkinson’s diseases [72], and neurodegenerative disorders [73].
Thus, the identification of acetylation sites may benefit the under-
standing of its molecular mechanism and further experimental
design. Proteomic and high-throughput MS-based techniques have
identified massive acetylation sites. For example, Choudhary et al.
detected 3,600 lysine acetylation sites on 1,750 proteins from a
human cell line. [74]; Lundby et al. quantified 15,474 lysine acety-
lation sites on 4,541 proteins from 16 rat tissues [75]. Several pub-
lic databases have been developed to facilitate the collection and
maintenance of acetylation sites information [38,43]. Therefore,
to predict acetylation sites, many computational methods have
been proposed [36,76,77]. Among them, deep learning methods
are increasingly popular in bioinformatics, which also show
encouraging results of acetylation sites identification [78-80]. For
example, Wu et al. [36] presented an MLP architecture, DeepAcet,
as an acetylation site prediction model. Feature embedding were
performed with six methods (One-hot, IG, CKSAAP, PSSM, AAindex,
Table 2
Comparison of deep learning-based phosphorylation sites predictors.

Tool name Framework Encoding strategy

MusiteDeep Keras/TensorFlow One-hot
PROSPECT PyTorch One-hot, EGAAC, CKSAAGP
DeepKinZero TensorFlow Word embedding
PhosTransfer TensorFlow Word embedding
GPS-PBS Keras/TensorFlow BLOSUM62
DeepPPSite Keras/TensorFlow BE, EBGW, CKSAAP, PSPM, IP
DeepIPs Keras/TensorFlow Word embedding
PhosIDN Keras/TensorFlow One-hot, PPI embedding
EMBER PyTorch One-hot

Note: -, data not available. AUC: Area under the Curve of ROC.
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and BLOSUM62); multilayer perceptron (MLP) is then applied to
extract features. After adopting 10-fold cross-validation method
[81] paired model evaluation on a separate test site, accuracies
were reported to be 0.8495 and 0.8487, respectively. Yu et al. also
developed a deep neural networks (DNN) based model called
DNNAce for acetylation sites prediction [78]. First, they applied
eight different encoding methods to extract information frommul-
tiple amino acid residues and then fused the encoded feature vec-
tors to create a high-level feature representation. These encodings
methods are BE, PseAAC, AAindex, NMBroto, EBGW, MMI, BLO-
SUM62, and KNN. Next, they employ LASSO to screen the optimal
feature subsets to improve the model performance. As a final stage,
nine prokaryotic acetylation site datasets are adopted to evaluate
the performance and compared to state-of-the-art models such
as AdaBoost, Naive Bayes, XGBoost, KNN, RF, SVM, CNN, and LSTM.
An evaluation of DNNAce was conducted by comparing its results
with ProAcePred [82]. The performance of DNNAce on the remain-
ing eight species was significantly lower than that of ProAcePred
except for S. typhimurium species. However, DNNAce outperforms
ProAcePred for the other seven species during independent evalu-
ation. Therefore, the advantages of DNNAce are trivial because
there is performance discrepancy in training and independent test-
ing. In contrast to deepAcet and DNNAce, which only consider the
amino acid sequences and their physicochemical properties, MDC-
Kace [80] pays attention to both sequence information and protein
structural properties to predict acetylation sites. In MDC-Kace,
modular densely connected convolutional networks (MDC), which
consist of three independent modules (sequence, physicochemical
and structure), is employed to extract features of lysine acetylation
sites. In the next step, squeeze and excitation (SE) layer [83] is uti-
lized to weight importance of features to build representation
more accurately. Finally, the fused advanced feature is fed into a
softmax layer for classification to predict acetylation sites effi-
ciently. The authors compared MDC-Kace with state-of-the-art
models (MusiteDeep [30], CapsNet [34], DeepAcet [36], PSKA-
cePred [84], EnsemblePail [85], GPS-PAIL2.0 [86] and ProAcePred
[82]) to evaluate its performance. Three species (human, M. mus-
culus, E. coli) datasets have been evaluated by10-fold cross-
validation and independent testing. The results indicate that
MDC-Kace has a similar performance as existing acetylation sites
predictors.
5. Ubiquitination site prediction

Ubiquitination represents an enzymatic PTM on cellular protein
by ubiquitin conjugation [87]. Multiple important cellular pro-
cesses are related to ubiquitination, including protein degradation
[88], cell division [89], and protein stability [90,91]. Ubiquitination
serves as a fundamental component of the ubiquitin–proteasome
system, mediating more than 80% of protein degradation in
eukaryotes [92]. Moreover, aberrant ubiquitination is highly
Window size Average AUC Reference

33 0.880 [30]
27 0.770 [56]
15 – [60]
– 0.898 [61]
21 0.832 [62]

CP 21 0.872 [57]
15 0.909 [63]
21 0.939 [64]
15 0.928 [58]
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related to the progression of aging [93] and many diseases; for
example, the dysregulation of ubiquitin–proteasome system may
contribute to the occurrence of neurodegenerative conditions
[94] and inflammatory bowel diseases [95]. Therefore, the identifi-
cation of ubiquitination sites is an essential step in exploring var-
ious ubiquitination-involved mechanisms. In order to identify the
ubiquitination sites in proteins, a myriad of experimental [96-98]
and computational methods [99-101] have been developed. In
recent years, with the continuous growth in high-throughput
experimental data [102-104], deep learning [105-107] has been
increasingly applied to the prediction of ubiquitination. Fu et al.
proposed a deep learning predictor, DeepUbi [37], based on CNN.
In this tool, four feature encoding schemes are utilized for feature
construction. Under 10-fold cross-validation, DeepUbi is able to
achieve an AUC of 0.90, with the accuracy, sensitivity, and speci-
ficity being all over 0.85. Compared with DeepUbi, which is trained
for general ubiquitination site prediction, DeepTL-Ubi [106] is a
species-specific sites predictor which consists of three connected
modules: a deep feature extractor, a source label classifier, and a
target label classifier. Firstly, a densely connected convolutional
neural network (DCCNN) is applied as the deep feature extractor,
which is composed of six layers. Features of both source species
and target species are extracted simultaneously by the deep fea-
ture extractor, mapping samples into a joint feature space. Sec-
ondly, the two parallel classifiers are employed to classify source
species and target species at the same time. Thirdly, ST (source
and target) loss assists the extractor in transferring knowledge
from source species to target species by learning relevant features.
Finally, as the performance optimization step, the classification
loss is minimized to train the two classifiers. DeepTL-Ubi outper-
forms several existing tools, including Ubisite [108], Ubiprober
[24], and MUscADEL [109], as shown in Table 3.
6. Other PTMs

In addition to those discussed, deep learning can also be applied
for other PTMs’ predictions, including methylation [110], S-
nitrosylation [111], succinylation [112,113], malonylation
[114,115], S-sulphenylation [116,117], crotonylation [118-121],
2- hydroxyisobutyrylation [122], glutarylation [123], N-
palmitoylation [124] carbonylation [125], and SUMOylation
[126]. In particular, crotonylation prediction has demonstrated
highly accurate results based on deep-learning methods. Moreover,
2- hydroxyisobutyrylation, as a novel type of PTM, was predicted
by deep learning method for the first time in 2020.

Along with predicting conventional PTMs associated with func-
tional group addition, deep learning-based methods have also been
applied to predict niche-type PTMs; for instance, Chaudhari et al.
developed a transfer learning-based predictor (DTL-DephosSite)
for dephosphorylation site prediction [127]. To collect datasets of
S, T, and Y dephosphorylation sites, they integrated the experimen-
tally verified datasets from the literature and datasets from the
DEPOD database. They then employ bidirectional long short-term
memory (Bi-LSTM), which can predict the modification of the tar-
get amino acid according to the knowledge of residues from both
Table 3
AUC values on different ubiquitination prediction tools. [106].

AUC Species

H.sapiens M.musculus

Tools DeepTL-Ubi 0.753 0.789
Ubisite 0.598 0.625
Ubiprober 0.624 0.661
MUscADEL 0.656 0.693
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directions. To the best of our knowledge, it is the first tool that
can predict the general dephosphorylation sites for protein S/T
residues and Y residues. On the other hand, a novel prediction
model focusing on carbonylation, Precar_Deep [125], is recently
reported. Carbonylation is an irreversible covalent PTM and is a
measure of protein oxidative damage. In this model, CNN and Bi-
LSTM are combined under a deep learning framework. The AUC
values of the four datasets (K, T, P, and R) reach 0.981, 0.982,
0.987, and 0.976, respectively. The AUC values of the independent
test set reach 0.945, 0.978, 0.965, and 0.983, respectively. In addi-
tion, there is also a novel small protein-addition type PTM site pre-
dictor based on deep learning in 2021. He et al. built an ensemble
learning model that adopts CNN and DNN, followed by the output
result containing four types of sites. [126]. This is the first tool that
predicts both ubiquitylation and SUMOylation sites at the same
time based on deep learning. PTM prediction tools mentioned in
this section, as well as predictors of phosphorylation, acetylation,
and ubiquitination, are tabulated in Table 4.
7. Summary and outlook

PTM identification is critical to a better understanding of molec-
ular functions and diseases. Advanced MS-based technology has
yielded an extensive list of identified PTMs, providing abundant
data to support the development of downstream computational
identification methods. Although the traditional machine learning
methods can precisely predict the modified sites, deep learning
features can be automatically deduced and optimally turned with-
out encoding features ahead of time [29]. Thus, deep learning is
highly effective in scientific fields with large and complex datasets.
Researchers recently gradually shift their attention from tradi-
tional machine learning to deep learning for PTM site prediction
(Fig. 2). Furthermore, with the growing number of PTM profiling
datasets, deep learning models have been developed for not only
phosphorylation, acetylation, and ubiquitination, but also many
other PTM types. In this review, we summarized the recently
(2020–2022) released deep learning tools and online web servers
for protein PTM site prediction (Table 4). Among all these, CNN
and cross-validation are the most widely used network model
and evaluation strategy, respectively (Fig. 3).

Although several deep learning methods have been built with
high performance to predict PTM sites, there is still room for
improvement. Most of the existing deep learning algorithms
employed CNN, DNN, and LSTM classifiers. However, each classifier
has its own advantages and disadvantages. Therefore, further
research is required to evaluate more state-of-the-art frameworks
such as attention and transformer-based models. On top of that, in
many developed tools, although PTM sites are predicted based on
certain characteristics, such as sequence information, physical
properties, chemical properties, and protein structure properties,
there are still other approaches that need to be explored, such as
reduced amino acid compositions [128-130]. Additionally, most
of web server links are not working, and few methods provide
stand-alone versions. After testing all web servers, we found that
they were difficult to operate.
R.norvegicus S.cerevisiae T.gondii A.nidulans

0.720 0.772 0.824 0.814
0.561 0.548 0.607 0.611
0.644 0.600 0.630 0.638
0.659 0.664 0.715 0.681



Table 4
Summary of recently deep learning tools associated with PTM sites prediction.

Tool name PTM type Species Core network
model

Evaluation
strategy

Benchmark
dataset size
(modification
sites)

Web server/ source code Published
year

Reference

MusiteDeep Multiple Human CNN 5-fold CV 997,687 https://www.musite.net 2017/2020 [30]
PROSPECT Phosphorylation Escherichia

coli
CNN 10-fold CV

and
independent
test

1,664 *prospect.erc.monash.edu/ 2020 [56]

DeepKinZero Phosphorylation Human ZSL holdout 12,901 *https://github.com/
Tastanlab/DeepKinZero

2020 [60]

PhosTransfer Phosphorylation – CNN holdout 43,785 https://github.com/yxu132/
PhosTransfer

2020 [61]

GPS-PBS Phosphorylation Multiple seven-layer
DNNs

10-fold CV 4,458 – 2020 [62]

DeepPPSite Phosphorylation Mammals
and
Arabidopsis
thaliana

LSTM 10-fold CV 41,436 github.com/saeed344/
DeepPPSite

2021 [57]

DeepIPs Phosphorylation Human CNN + LSTM 5-fold CV 10.978 https://lin-group.cn/server/
DeepIPs
https://github.com/linDing-
group/DeepIPs

2021 [63]

PhosIDN Phosphorylation Human Multi-layer
DNNs

holdout more than
160,000

https://github.com/
ustchangyuanyang/PhosIDN

2021 [64]

EMBER Phosphorylation Multiple CNN + RNN 5-fold CV 8,389 https://
github.com/gomezlab/EMBER

2022 [58]

DNNAce Acetylation Multiple DNN 10-fold CV
and
independent
test

96,372 https://github.com/
QUSTAIBBDRC/DNNAce/

2020 [78]

Deep-PLA Acetylation Human and
Nonhuman

DNN 5- and 10-
fold CV

1,331 https://deeppla.cancerbio.
info

2020 [79]

MDC-Kace Acetylation Multiple MDC 10-fold CV
and
independent
test

11,583 https://github.com/
lianglianggg/MDC-Kace

2020 [80]

DeepTL-Ubi Ubiquitination Multiple CNN holdout 94,518 github.com/USTC-HIlab/
DeepTL-Ubi

2020 [106]

Wang et al.’s
work

Ubiquitination Multiple CNN 10-fold CV 121,742 *https://github.com/wang-
hong-fei/DL-plantubsites-
prediction

2020 [105]

UbiComb Ubiquitination Multiple LSTM 10-fold CV 121,742 https://nsclbio.jbnu.ac.
kr/tools/UbiComb

2021 [107]

SSMFN Methylation Human and
Mouse

CNN + LSTM holdout 6,754 *https://github.com/
bharuno/SSMFNMethylation-
Analysis

2021 [110]

Malebary et al.’s
work

Methylation Human CNN 10-fold CV
and jackknife

2000 https://github.com/s2018
https://doi.org/1080001/
WebServer.git

2022 [14]

RecSNO S-Nitrosylation – BiLSTM 5-fold CV 4,762 https://nsclbio.jbnu.ac.
kr/tools/RecSNO/.

2021 [111]

MDCAN-Lys Succinylation Human MDCAN 10-fold CV
and
independent
test

77,418 – 2021 [112]

LSTMCNNsucc Succinylation Multiple LSTM + CNN holdout 18,593 https://8.129.111.5/ 2021 [113]
DeepMal Malonylation Multiple CNN + DNN 10-fold CV

and
independent
test

17,288 https://github.com/QUST-
AIBBDRC/DeepMal/

2020 [114]

K_net Malonylation Human and
Mice

CNN 10-fold CV
and SEV

85,204 – 2020 [115]

DeepCSO S-Sulphenylation Homo
sapiens and
Arabidopsis
thaliana

LSTMWE 10-fold CV 10,354 *https://www.bioinfogo.org/
DeepCSO.

2020 [116]

DeepSSPred S-Sulphenylation Homo
Sapiens

2D-CNN jackknife 7,756 *https://github.com/
zaheerkhancs/DeepSSPred

2021 [117]

pKcr Crotonylation Papaya CNN 10-fold CV
and
independent
test

58,769 *https://www.bioinfogo.org/
pkcr.

2020 [119]

Deep-Kcr Crotonylation Human CNN 10-fold CV 19,928 https://lin-group.cn/server/
Deep-Kcr

2020 [120]
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Table 4 (continued)

Tool name PTM type Species Core network
model

Evaluation
strategy

Benchmark
dataset size
(modification
sites)

Web server/ source code Published
year

Reference

DeepKcrot Crotonylation Multiple CNNWE 10-fold CV
and
independent
test

10,702/1,265/
2,044/5,995

*https://www.bioinfogo.org/
deepkcrot.

2021 [121]

nhKcr Crotonylation Human CNNrgb 10-fold CV
and
independent
test

180,312 https://nhKcr.erc.monash.
edu/

2021 [118]

DeepKhib 2-
Hydroxyisobutyrylation

Multiple CNNOH 10-fold CV
and
independent
test

18,946/
15,444/
12,756/
19,330/2,098

*https://www.bioinfogo.org/
DeepKhib.

2020 [122]

DeepGlut Glutarylation Prokaryotes
and
Eukaryote

CNN 10-fold CV 4,572 *https://github.com/urmisen/
DeepGlut.

2020 [123]

NPalmitoylDeep-
PseAAC

N-Palmitoylation Human DNN holdout 4,364 https://mega.nz/#F!s9cSiQIa!
1jXO0NmgrhxUqOexmYuouA

2021 [124]

DTL-DephosSite Dephosphorylation Human Bi-LSTM 5-fold CV
and
independent
test

4,956 https://github.com/dukkakc/
DTLDephos

2021 [127]

PreCar_Deep Carbonylation Human and
other
Mammals

CNN + BiLSTM 10-fold CV
and
independent
test

5,003 https://github.com/QUST-
SHULI/PreCar_Deep/

2021 [125]

He et al.’s work SUMOylation
Ubiquitylation

– CNN + DNN 10-fold CV 280,731 https://github.com/
lijingyimm/MultiUbiSUMO

2021 [126]

Note: *, Link is not working at the time of writing. Multiple, more than three species or PTM types. -, data not available.

Fig. 3. Sankey diagram depicting the distribution of PTM types, core network models, evaluation strategies, and published years.
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By using deep learning based methods, PTM identification can
be implemented in a non-invasive, efficient, and low-cost way.
However, there is still a caveat before deep learning algorithms
can directly diagnose diseases. Typical PTM prediction models lack
sufficient interpretations due to the black-box nature of deep
learning algorithms. Insufficient interpretability may not be an
issue in many areas, but within healthcare, every misdiagnosis
can pose a danger to a patient’s health. Therefore, transparent
and explainable models [131-133] will be needed, so that the tech-
nique can be applied in clinical practice.
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